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Abstract

Computing the spectral decomposition of the Laplace-Beltrami Operator on a manifold M has proven useful for applications such
as shape retrieval and geometry processing. The standard operator acts on scalar functions which can be identified with sections of
the trivial line bundle M X R. In this work we propose to extend the discussion to Laplacians on nontrivial real line bundles. These
line bundles are in one-to-one correspondence with elements of the first cohomology group of the manifold with Z, coefficients.
While we focus on the case of two-dimensional closed surfaces, we show that our method also applies to surfaces with boundaries.
Denoting by f3 the rank of the first cohomology group, there are 2° different line bundles to consider and each of these has a naturally
associated Laplacian that possesses a spectral decomposition. Using our new method it is possible for the first time to compute
the spectra of these Laplacians by a simple modification of the finite element basis functions used in the standard trivial bundle
case. Our method is robust and efficient. We illustrate some properties of the modified spectra and eigenfunctions and indicate
possible applications for shape processing. As an example, using our method, we are able to create spectral shape descriptors with
increased sensitivity in the eigenvalues with respect to geometric deformations and to compute cycles aligned to object symmetries

in a chosen homology class.
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1. Introduction

Curves, surfaces and solids are commonly used in computer
graphics, computer vision and computer aided geometric de-
sign, where they serve as basic building blocks or data elements.
Several continuous and discrete representations exist and many
algorithms have been proposed to operate on these representa-
tions for a variety of tasks or to convert between them. It is
often useful to view these objects within the framework of dif-
ferential geometry where they become instances of manifolds,
with or without boundary. Loosely speaking, a manifold M is a
space that locally looks like the Euclidean space. In this setting
it becomes possible to transfer the tools and techniques of mul-
tivariate calculus onto M and to develop algorithms that benefit
from the rich arsenal of techniques available in this mathemati-
cal fundament.

In this paper we deal with the Laplace-Beltrami operator
which is the generalization of the Euclidean Laplacian. As
in the Euclidean case it can be defined by Af = —divV f,
where V f is the gradient of the real-valued function f defined
on the manifold M and div is the divergence operator. We fol-
low the above sign convention, making A a positive definite
operator. The Laplace operator is abundant throughout math-
ematics, physics and engineering. It plays an important role
in describing physical phenomena such as heat diffusion and
wave propagation. Moreover, in the context of shape analysis,
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the Laplace-Beltrami operator has proven useful for a variety of
applications due to the fact that it captures important geometric
and topological information about the shape represented by the
manifold in an isometrically invariant way.

Solving the eigenvalue problem Af = Af results in a se-
quence of eigenvalues Ay, A, . . ., called spectrum of A and a se-
quence of eigenfunctions fi, f», ... corresponding to the eigen-
values. The eigenfunctions have the useful property that they
are orthonormal with respect to the L? inner product

() = fM FOOR(AM

and form a basis for the corresponding Hilbert space of func-
tions defined on M. For rectangular or spherical manifolds M
we obtain the well-known Fourier bases and spherical harmon-
ics, respectively. From this functional-analytic point of view,
knowledge of the eigenvalues and eigenfunctions leads to an
improved understanding of the Laplacian itself, since it be-
comes diagonal in the basis of its eigenfunctions. Intuitively
this means that the action of A on a function f can be described
by the action of an infinite diagonal matrix, the diagonal entries
being the eigenvalues, on the infinite vector of coefficients de-
scribing f with respect to the eigenfunction basis, see e.g. [1].
The aforementioned decomposition of f provides a natural fre-
quency decomposition for dealing with data on the manifold at
different scales.

1.1. Related Work and Motivation
Laplacians in several computational discretizations, see
e.g. [2-5], and their spectral decomposition have received much
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attention in the geometric processing community.

Among the applications are shape and image retrieval us-
ing a prefix of the spectrum as a fingerprint or “Shape-DNA”
[6-12], geometric signal processing operations [13-15], sur-
face remeshing and parametrization [16-19], creating descrip-
tors for shape matching [20-26], shape segmentation and reg-
istration [27, 28], statistical shape analysis for medical studies
[29-31] and symmetry detection[32], just to mention a few. A
survey of some applications can be found in [33]. According to
our knowledge the earliest research works employing Laplace
(Beltrami) spectra as finger prints for classification, retrieval
and matching of shapes and images appears to have been done
at the Welfenlab in the years 1999-2001, cf. [11], for details
see [12]. Theoretical background is provided by a branch of
mathematics known as spectral geometry, in which several re-
sults have been obtained, relating e.g. asymptotic expansions of
fundamental solutions of the heat and wave equation with the
geometry of the manifold, see e.g. [34-38].

In this paper we introduce numerical computations for Lapla-
cian operators on nontrivial Euclidean line bundles over two-
dimensional surfaces M. To motivate and explain the idea,
consider first the one-dimensional simple case where M is the
unit circle S or equivalently the interval [0, 27r] with end points
identified. Any real-valued function f on M can be considered
as a 2m-periodic function on R. The Laplace-Beltrami Operator
becomes A = —-<45 and the eigenvalue problem reads:

dx?
—f"(x) = Af(x), f0)=fQ2n), [f(O)=f(Q2n).

The solutions in this case are easily obtained: The eigenvalues
are A; := k? for any integer k and the corresponding eigenfunc-
tions are linear combinations of sin(kx) and cos(kx). At this
point, consider the question:

What happens if f is chosen 2m-antiperiodic?

This means the boundary conditions become
f0)=-fC2m), f(0)=-f(@2n).

It is easy to check that the eigenvalues are 4; = (k + %)2 and
the corresponding eigenfunctions are linear combinations of the
functions sin((k + 3)x) and cos((k + 1)) for integers .

For higher-dimensional manifolds the spectral decomposi-
tion is not easily obtained since only very special metrics give
rise to closed form solutions via techniques such as separation
of variables [39]. Hence, numerical approximation methods,
typically based on the finite element or finite difference schemes
have to be used.

Our goal is to study the generalization of the question above
in the situation where M is a two-dimensional manifold, fo-
cusing on a numerical approach based on the finite element
method. We will show that our method also covers manifolds
with boundaries. Intuitively we have the freedom to choose
if a function f on M has a sign-flip discontinuity when cross-
ing a set of specific loops or paths on M. In order to discuss
these matters on solid mathematical ground, it is appropriate
to interpret the situation within the framework of vector bun-
dles, where f becomes a smooth section of a certain vector

bundle over M that incorporates the sign flips in its transition
functions, ultimately leading to modifications in the discretized
problems under consideration. Similar discontinuities arise for
example in the context of modeling singularities occurring in
global parametrization [17-19].

We note that analogous situations also commonly occur
in physics in the context of describing the wave function of
fermionic particles, i.e. half-integer spin particles such as elec-
trons, giving rise to the notion of spin structure. The choice
of spin structure is essential in defining the spinor bundle, the
spinor Laplacian and the Dirac operator which is a square root
of the spinor Laplacian. Recently, related concepts have made
their way into applications in computer graphics and geomet-
ric modeling. In [40] an algorithm is presented that employs a
quaternionic discrete Dirac operator for constructing conformal
mappings of surfaces. This has applications such as distortion-
minimizing texture mapping and curvature-based shape editing.
A key step in the aforementioned algorithm is the computation
of an eigenfunction of a modification of this discrete operator.
The authors show that their discrete Dirac operator is related to
a Dirac operator in the continuous setting. For example they
show that it is locally equivalent to the standard Dirac operator
for a spin % particle in the plane.

While objects with simple topology like the Euclidean plane
or compact oriented surfaces of genus zero have essentially
only one spin structure, it is known that there are several possi-
ble spin structures for surfaces with more complicated topology
and each one induces a different spinor bundle, different Dirac
operators and associated spectra. More precisely the possible
spin structures are in correspondence with elements of the first
cohomology group H' (M, Z»), see [41].

In our case, we consider real line bundles, which are also in
one-to-one correspondence with elements of H'(M, Z,). How-
ever, while the fiber of a spinor bundle is some representation
of the spin group, typically C?, the fiber of our bundles is R.
This similarity suggests that the ideas presented here are appli-
cable to more general settings, for example in order to compute
the spectral decomposition of Dirac operators for different spin
structures.

1.2. Outline

In the following section we recall several notions and facts of
differential geometry and topology, focusing especially on the
concept of a vector bundle. The Laplace-Beltrami operator will
be identified with a Laplacian operator associated to the trivial
line bundle over M. However, in general the trivial line bundle
over M is just one of several different line bundles and for each
of them an associated Laplacian exists.

In the third section we describe an algorithm that computes
the spectra of Laplacian operators associated naturally to any of
these nontrivial vector bundles.

Afterwards we present results obtained using our method and
give examples, focusing on the differences that arise from the
non-trivial bundles. We also validate our results against known
spectra and spectra computed by a different method for a re-
stricted class of shapes, namely flat tori and tori of revolution.



P

Figure 1: Line bundles over the circle.

Finally we give a conclusion and indicate possible applica-
tions and directions for future work.

2. Mathematical Background

We review some of the terminology and notation that we will
need, avoiding technical details. For a comprehensive treat-
ment, including formal definitions, we refer to textbooks on
differential geometry and topology such as [42-44].

A vector bundle E over a manifold M is obtained by assign-
ing to each point p € M a vector space E, in a continuous way.
The dimension of the vector spaces is called rank of the bundle
and vector bundles of rank one are called line bundles.

The simplest line bundle is the Cartesian product M x R
which assigns to each point a copy of the real numbers. This is
the so-called trivial line bundle. However, not every line bun-
dle is trivial: It is possible to assign to each point a copy of R
such that the resulting bundle is not homeomorphic to M x R.
Figure 1 visualizes two possible line bundles over the circle
M := S'. The first bundle is the trivial bundle which is topo-
logically an infinite cylinder, although only a finite portion is
shown in the figure. The second bundle in the figure looks lo-
cally like a Cartesian product, while globally it is twisted like
a Mobius strip of infinite width. Again, only a finite portion is
shown.

A map s : M — E with the property that s(p) € E, is called
a section of E. The space of all smooth sections is denoted
by I'(E). Sections of real line bundles are easy to visualize:
Locally they can be imagined as the graphs of real-valued func-
tions. The red lines in Fig. 1 show sections of the trivial and
non-trivial real line bundles over the circle.

Besides the line bundles, two very important vector bundles
associated to a manifold are the tangent bundle 7'M which is
the collection of all tangent spaces, and the cotangent bundle
T*M which is the collection of vector spaces being dual to the
tangent spaces. Sections of these bundles are the familiar vector
fields and differential one-forms.

A useful concept for computations in vector bundles is the
notion of repers: A local reper or frame of E over U C M is
a collection of sections ey, ..., e; such that for all p € U the
vectors e1(p), ..., ex(p) form a basis of E,. A reper is called
global if this property extends to all p € M.

Every vector bundle admits local repers. A vector bundle
admitting a global reper is trivial. Notice that for line bundles,
a reper consists of only one non-vanishing section.

Often, vector bundles come equipped with additional struc-
tures, such as a fiber metric or a connection.

A fiber metric is a scalar product ¢-,-) : E, X E, — R de-
pending smoothly on p. Vector bundles with such a fiber metric
are called Euclidean vector bundles. We will assume through-
out this paper that the tangent bundle is Euclidean. In this case,
its fiber metric is called a Riemannian metric or metric tensor
which is often denoted by g or by a matrix g;; with respect to
a local reper of T M. This allows us to measure lengths, angles
and volumes on the manifold M.

A connection V on a vector bundle E is a differential operator
V . T(E) - I'(EQT*M) that is R-linear and satisfies the Leibniz
rule V(f¢) = ¢ @ df + fV¢ for any function f and any section
¢. Here d denotes the exterior derivative, mapping a real-valued
function to its differential, which is a real-valued one-form. A
connection can be considered as an extension of this concept,
mapping E-sections to E-valued one-forms.

The space of sections I'(E) of an Euclidean vector bundle be-
comes a Hilbert space by introducing the natural inner product

(0.¥) :=f<¢,l,0> am
M

The Riemannian metric on 7M induces a fiber metric on 7* M.
The fiber metric of E and the fiber metric of 7* M induce a fiber
metric in the bundle E®T*M and therefore a natural inner prod-
uct on the space of E-valued one-forms. These inner products
are needed in order to define the adjoint to V which is denoted
by V*. The adjointness property means that (V¢, @) = (¢, V'a)
for all sections ¢ and all E-valued one-forms «. It is essential
for deriving the weak variational formulation in the finite ele-
ment method.

Using the connection and its adjoint, the Connection Lapla-
cian associated to V is defined by A := V*V.

The Laplace-Beltrami operator is defined by A = d*d where
d the differential and d* is its adjoint. It is a special case of
a connection Laplacian since d is a connection on the trivial
Euclidean line bundle M x R.

2.1. Classification of Euclidean Line Bundles

Having identified the classical Laplace-Beltrami operator
with the connection Laplacian d*d of the trivial Euclidean line
bundle, we can now proceed to consider other line bundles. To
characterize these, we will make use of some tools of algebraic
topology, see Appendix A for a quick review and [44] for de-
tails.

According to the following classification theorem, which we
cite from [45], the following objects are equivalent via appro-
priate isomorphisms:

An Euclidean line bundle E over M.

An element & of the first cohomology group H'(M, Zy,).
e A two-sheeted cover p : M — M.
e A homomorphism ¢ : m1(M) — Z,.

Any element ¢ € H'(M,Z,) of the cohomology group is
completely characterized by its values on a basis. For a com-
pact closed oriented surface of genus g, the rank of the first



(co-)homology group is 2g. Therefore we choose a basis
I' = {y1,...,¥2} of cycles whose equivalence classes generate
H\(M, Z).

Intuitively we can identify a section of an Euclidean line bun-
dle E with a real-valued function on M that does or does not flip
sign when crossing a loop ;. We will encode this information
by a tuple (T, y) where y is a Z,-valued vector of dimension
2g, setting y(i) = 0 if no sign flip occurs across y; and setting
x(@) = 1if asign flip occurs. In the latter case, we will call y; an
active generator. We will denote the corresponding Euclidean
line bundle by Er,.

More formally, we can construct the bundle as follows: Let
¢ : 1 (M) — Z; be a homomorphism. Let M be the universal
covering of M. Using ¢ and interpreting the fundamental group
as the group of deck transformations, we define an action of
m1(M) on the trivial line bundle M x R via:

v(q,v) = (y’q‘, (—1)¢(7)v) fory e m(M), g€ M,veR

The bundle E := (M X R)/m1(M) is an Euclidean line bundle
over M. The connection V = d on M X R lifts to a connection
on M x R and induces a connection on E. This connection in
turn induces a connection Laplacian that acts locally just like
the Laplace-Beltrami operator.

Note that a smooth section of E can be identified with a
smooth real-valued function on a (two-sheeted) covering space
of M, provided that it satisfies the chosen symmetry or anti-
symmetry conditions. Therefore not every function on the cov-
ering space corresponds to a smooth section of the bundle.

3. Description of our Algorithm

Our goal is the following: Given an Euclidean line bundle
Er, over M we want to compute the spectral decomposition of
the associated connection Laplacian.

In order to carry out the numerical computation we prescribe
sign-flips across the loops in I similar to the sign flip that arose
in the boundary conditions in the motivating introductory exam-
ple employing the Mobius strip. The sign-flips are incorporated
into the finite element basis functions. The resulting spectrum
does not depend on the specific choice of loops, but only on the
element & € H'(M, Zy) that the tuple (I', y) represents.

In the first subsection we determine the system of loops I,
which is a necessary preliminary step for the subsequent steps.
Then we describe the classical finite element approach. Finally
we introduce the sign-flip modifications necessary in order to
account for the nontrivial bundles.

3.1. Computing Homology Generators

We assume that our manifold is furnished with a triangulation
(V,E, F) where V is the set of vertices, E c V? is the set of
edges and F C V? is the set of faces. The set of vertices together
with the edges form a graph (V, E). The dual of this graph is
obtained as the graph (F, E*) where E* c F? is given by all
pairs of faces sharing an edge in E. In the following, we identify
E and E* with each other. The problem of computing cycles on
surfaces has been researched before, see e.g. [46—49] and the

(c) Double sign flip along vertex basis function

Figure 2: Modified quadratic finite element basis functions.

references therein. For our purposes we apply the algorithm by
Erickson and Whittlesey [47]:

1. Compute a spanning tree 7 C E of the graph (V, E).

2. Compute a spanning tree 7* ¢ E* of the dual graph (F, E*)
using only edges not occurring in T

3. Compute the set L of all edges not occurring in 7 or T*.
Each edge e € L induces acyclein T'.

For a closed manifold of genus g, this algorithm yields a set of
2g cycles that generate H,(M, Z,). It can be run with different
spanning trees to obtain different generators, though any set of
cycles generating the first homology group is sufficient for our
later calculations.

3.2. Finite Elements Formulation

The general outline for applying a finite element computation
to the the Laplacian eigenvalue problem d*df = Af is obtained
in two steps: First, taking the inner product with an arbitrary
test function ¢ we obtain the equation:

ddf,¢) = (df.do) = A(f.) Vo

Here we exploited the adjointness property of the operators
d and d* with respect to the inner products on functions and
one-forms. This weak variational formulation is discretized
by writing the unknown function f as a linear combination
f=rflor+ - fNoy of a collection (¢;) of suitable basis func-
tions and solving the discrete generalized eigenvalue problem

Af = ABf ey



where A and B are N X N matrices and f = (f¥) is a vector
of dimension N. The entries of the matrices are computed by
evaluating the inner products

Ajj 2=f<d90i,d¢j>dM, Bij=f90i<ﬁde-
M M

According to standard finite element constructions, see e.g.
[50], the basis functions are constructed by piecing together
polynomials over the individual triangles in a triangulation of
M to yield functions with local support that satisfy the interpo-
lation conditions ¢;(g;) = 0;; on a set of N nodes (gx) spaced
regularly at the vertices, on the edges and in the interior of
the triangles. This establishes a one-to-one correspondence be-
tween every node g, and the basis function ¢ evaluating to one
precisely at that node and to zero at all other nodes. Depend-
ing on where ¢y is located, the corresponding basis function is
called a vertex, edge or bubble function, respectively.

For the classical Laplace-Beltrami eigenvalue problem, the
basis functions are continuous. In our method we modify some
of the basis functions to have a sign flip across some of the
homology generators computed in the previous section. Any
basis function whose support is crossed by one or more active
generators is affected. Depending on the type of basis function
we have three cases to consider:

e Bubble functions are not affected since their support is
constrained to one triangle and they vanish on the edges
of the triangle.

e An edge basis function has a support consisting of two
triangles. Assuming that an active generator y; passes
through the common edge and denoting by T the trian-
gle on the right-hand side of vy, we flip the sign of the
basis function over Tg.

e A vertex basis function has a support consisting of all tri-
angles incident to a vertex v. Assuming that a single active
generator y; passes through v, it divides the triangle fan
into two sets T, and Tk corresponding to the triangles to
the left and to the right of ;. We apply a sign flip to the
part of the basis function over T¢. If more than one ac-
tive generator passes through the vertex of a vertex basis
function, the modifications are aggregated.

Note that our computations work well with linear finite ele-
ments, in which case there are only vertex basis functions, as
well as with higher order elements that require edge and bub-
ble functions. The latter can be employed if high accuracy is
desired. Figure. 2 illustrates how modified quadratic edge and
basis functions look like. For more details regarding the imple-
mentation we refer to Appendix B.

The resulting matrices A and B define a generalized symmet-
ric eigenvalue problem, in which A and B are symmetric and B
is positive definite. In our implementation we used the SLEPc
library [51] employing the Krylow-Shur algorithm and using
the shift-and-invert transform for solving the resulting sparse
problem.

(a) Plot of the 8th eigenfunction on a genus two object. All loops
are active.

(b) Same computation using a different set of loops. All loops
except the red one are active. Notice that the contour lines of
absolute value are unaffected.

Figure 3: Example: Two views of the same eigenfunction.

4. Results

4.1. Experimental Results and Analysis

The described algorithm was implemented in C+ and ran on
a collection of test models with positive genus. We used the
SLEPc library [51] for solving the generalized matrix eigen-
value problem and OpenGL for visualization.

4.1.1. Invariance with respect to the Homology Generators

A typical result of our method is shown in fig. 3(a): The
depicted model has genus two. The chosen basis of the first ho-
mology group consists of the four cycles colored in red, green,
blue and yellow. All loops have been chosen active by set-
ting y = 1111. The spectral decomposition of the correspond-
ing Laplacian was performed with quadratic finite elements.
The mesh is colored by the resulting 8th eigenfunction, clearly
exhibiting the sign-flip discontinuities across the loops as the
color palette maps positive values to blue colors and negative
values to red colors. The picture also shows contour lines of
constant absolute value. As expected, these lines are smooth,



unaffected by the shape of the loops or the underlying mesh.
It is useful to remember that the discontinuous function that
we plot on the surface of the object is just a visualization of a
smooth section of a nontrivial Euclidean line bundle.

We point out, that it is not necessary to choose a nice basis
of loops, as any homology basis would suffice. The loops don’t
have to be short or straight and they may even degenerate in the
sense of being locally parallel to other loops or to themselves,
as long as the sign flip modifications are correctly applied in the
FEM basis functions. The spectrum and the contour lines of ab-
solute value will not be affected by such changes. Any changes
are purely due to the way the active loops are positioned in re-
lation to each other with respect to Z, homology and there are
precisely 2%¢ different configurations. For example, fig. 3(b)
shows a different configuration of loops: The yellow loop has
been deformed, the blue loop has been moved down and the
green loop switched from one handle to another. This config-
uration represents a different basis for the homology group. It
would have been the same if the green loop had only been de-
formed. In order to account for the change in the homology
basis, the red loop has been deactivated and the spectral de-
composition was performed with active yellow, green and blue
loops. Despite all these changes, we obtain exactly the same
spectrum and the same 8th eigenfunction. Of course we would
have obtained a different 8th eigenfunction if we had chosen a
different bundle.

4.1.2. Zero Sets of Nontrivial Eigenfunctions

The zero sets of the eigenfunctions of the Laplace-Beltrami
operator, sometimes also called nodal sets, have been used for
shape segmentation since they often identify privileged direc-
tions related to the symmetries of the objects or capture surface
protrusions that are often well aligned with perceptual features,
see [4, 32]. Among all eigenfunctions, the first one correspond-
ing to the lowest non-zero eigenvalue has been proven to be
especially useful, since it varies smoothly along the principal
direction of elongated objects [52],[53] and in many cases its
zero set aligns with a central symmetry of the object. This prop-
erty has been exploited for example in medical studies to detect
the Corpus Callosum, an important structure in brain anatomy,
located in the middle between the left and right hemispheres of
the white matter surface [54].

Regarding the zero set of a section s on a nontrivial line bun-
dle Er,, we observe that this set, when interpreted as a chain,
is closed and homologous to the collection of active loops in I".
This is seen as follows: Denote by ¢ the zero-set of s, denote by
v the union of active loops, assuming without loss of general-
ity that all loops have been slightly deformed so they intersect
only transversally. Identify s with a function s : M — R that
has the sign-flip discontinuities when crossing the set y and let
D be the subset of M where s is positive. Interpreting y and §
as 1-cycles and D as a 2-chain, we have that D is bounded by
v + 0. Therefore y = ¢ with respect to Z, homology.

Applying this observation to the eigenfunctions of the non-
trivial bundle Laplacians, we can compute cycles that are ge-
ometry aware in the above mentioned sense within any chosen
homology class. The example in fig. 4 shows the zero-sets of

(a) Loopsin T’ (b) Green loop active

(handle loop)

(c) Red loop active
(tunnel loop)

(d) Both loops active

(e) zoom-in on 4(d) (f) Trivial bundle

Figure 4: Zero sets of the first nontrivial eigenfunction for a genus 1 object.

the first eigenfunctions on all four bundles associated to a genus
one kitten model. The computations were performed using the
two homology generators depicted in fig. 4(a). The nontrivial
bundle cases are shown in figs. 4(b), 4(c), 4(d), while the clas-
sical trivial bundle case is shown in 4(f) for comparison. Note
that in general, the zero set need not be connected or can have
degeneracies. However the latter typically appears only in per-
fectly symmetric situations that easily break up to yield paths
as shown in fig. 4(e). It is also possible to obtain long cycles
that wrap around the surface in complicated ways within their
respective homology class.

Concentrating on short cycles, we performed several experi-
ments with the zero sets of the first eigenfunctions and obtained
results similar to [49] who compute cycles aligned with the
principal curvature direction fields on the surface or [48] who
compute short cycles that wrap around the handles and tunnels
of the surface. In our approach, we compute the zero sets of all
22¢—1 first eigenfunctions on the nontrivial bundles of an object
with genus g and sort these by total length. Then we pick out
a set of 2g cycles that are linearly independent. Figure 5 shows
the output of this method for objects of genus one to four. We
note that the resulting loops, while not necessarily the shortest
possible, do align well with symmetries of the object.

The obtained zero sets form cycles that are characteristic
for their respective homology class and depend on the intrin-
sic metric of the surface. Therefore they can be used in the
context of shape analysis for objects with non-trivial topology.
An example application emphasizing the use of characteristic
cycles in medical shape analysis can be found in [55].
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Figure 6: Evolution of all four spectra for a deformation of the kitten model.

4.1.3.

By considering all combinations of loops that are active, we
obtain prefixes of all 2%¢ different spectra for a model with
genus g. For the model in fig. 3 we have g = 2 and the resulting
sixteen spectra are shown in fig. 7 indexed by the vectors y. Of
these spectra, only the bottom row, corresponding to the trivial
bundle could be computed before. The other fifteen spectra are
new and we will call them nontrivial spectra.

Comparison of the Different Spectra

We note that the first eigenvalue is zero if and only if the
bundle is trivial. This is easily seen as follows: If E is trivial,
then f := 1 gives an eigenfunction for 4 = 0. Now, assume E
is not trivial, and f is an eigenfunction corresponding to 4 = 0.
Because Af = d*df = 0, it follows that df = 0 and therefore f
is locally constant. If the constant were not zero, then f would
be a globally non-vanishing section which is a contradiction to
E being nontrivial. So f must be zero everywhere, but this is a
contradiction to f being an eigenfunction.

The existence of the nontrivial spectra suggests extensions
of concepts such as Shape-DNA[6, 7]. Considering the basic
example of the Laplacian on a circle of circumference L, the
eigenvalues given by A; = wi for wy = 2nk/L, k € Z in-

dicate a dependence on the circumference L. Intuitively, it is
the necessity of an eigenfunction to be periodic on the circle
that selects these particular values for w. As discussed in the
introduction, anitperiodicity or equivalently the choice of the
nontrivial bundle results in a shift of the eigenvalues. Similar
behavior manifests itself when considering surfaces. As an ex-
ample we created a deformation of the kitten model by thicken-
ing its tail over thirty time frames. The left part of fig. 6 shows
frame k € {1, 10,20, 30} of this sequence. For each frame we
computed the lowest thirty eigenvalues of the classical Laplace-
Beltrami spectrum and the other three nontrivial spectra as de-
fined by activating all combinations of the handle and tunnel
loop, see fig. 4(b) and 4(c). The resulting spectral curves are
shown in the right part of fig. 6. It is interesting to note that
some nontrivial spectra are more susceptible to the deforma-
tion. More precisely, the influence of thickening a handle is
reflected in the eigenvalues when introducing sign-flips across
the corresponding tunnel loop. This property can be exploited
to generate more sensitive fingerprints in the context of Shape-
DNA by combining information from multiple spectra. It can
also be used to generate shape descriptors that are more sensi-
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Figure 7: Spectra associated to the different bundles on the object in fig. 3.

tive to deformation affecting a chosen homology class.

4.1.4. Behavior of the Heat Kernel Signature

Considering the heat diffusion equation a = _

i Af with given
initial data f(¢, x)|;=o, it can be shown that the eigenvalues A;
and the eigenfunctions f; of the Laplace-Beltrami operator A

determine the heat kernel
Hx,y)=e™ = 3 e f0fiy) 1> 0xy€eM,
k=0

also known as the fundamental solution of the heat equation.
Knowing the heat kernel allows us to compute how the initial
heat distribution evolves with time, see e.g. [1, 38]. Intuitively
Hi(x,y) describes the amount of heat obtained after time ¢ at
the point y if unit heat was initially concentrated at the point x
for t = 0. The heat kernel can be used to define the so called
heat kernel signature S (¢, x) := H,(x, x), which was introduced
in [21] as a multi-scale shape descriptor. The multi-scale nature
is owed to the fact that for small ¢ the heat diffusion process is
mostly influenced by the local geometry of M while for large ¢
it is influenced by large geometric features and the topology of
the manifold. For example S (#, x) becomes constant as t — oo
since heat eventually distributes uniformly over M.

Considering the heat diffusion equation on nontrivial bun-
dles has interesting implications: Imagine a point p located on
a handle of M. After placing a heat source at p at the time ¢ = 0,
the heat begins to diffuse around the handle. For a time param-
eter r > 0O that is relevant in scale with respect to the diameter
of the handle, the heat has enough time to diffuse to the points
opposite to p on the surface of the handle. If the non-trivial bun-
dle E is defined by an active tunnel loop y on the handle, then,
loosely speaking, heat cancels itself due to the sign flip across y
and the handle cools down rapidly. An illustration of this phe-
nomenon is shown in fig. 8 which depicts an object colored by
the HKS function S (z, x) at several instants of increasing time
t, comparing the classical HKS with the HKS derived from the
Laplacian on a nontrivial bundle.

4.1.5. Extension to Manifolds with Boundary
In the discussion so far we assumed our manifold M to
be closed, i.e. 9M = (. Our method generalizes easily for

8.8.0.0.

(a) Classical HKS

.0.0.0.

(b) Nontrivial bundle HKS

Figure 8: Comparison of the heat kernel signature function on the trivial and a
nontrivial bundle.

manifolds with boundary. Recall that Euclidean line bun-
dles are classified by elements of the first cohomology group
H'(M,Z,). The Lefschetz duality theorem (see for example
[56]) implies that there is an isomorphism between H'(M, Z,)
and the first relative homology group H(M,0M,Z;). In this
relative homology, two 1-chains are homologous if their differ-
ence is the boundary of a 2-chain plus some 1-chain on M.

In order to compute a set of paths that generate
H\(M,0M,Z,), we first apply the algorithm of section 3.1,
since, following a remark in [49], the algorithm remains correct
by considering every boundary loop to enclose a hypothetical
face whose geometry need not be determined. If M consists
of b boundary loops, we additionally compute b — 1 paths that
connect different boundary loops. Again we can choose any
paths, but for visualization we prefer short connections that are
easily obtained with a modified Dijkstra algorithm.

Having obtained 2g + b — 1 generators of H(M,0M, Z,) we
can prescribe sign flips across each of them to define 2%8*4~!
different bundles. The Laplacian eigenvalue problem needs to
be supplemented with appropriate boundary conditions, such as
Dirichlet or Neumann, on each boundary loop.

An example is shown in fig. 9. The object has genus three
and three boundary loops, yielding 2 - 3=6 loopsand 3 — 1 =2
paths which are all relative cycles that generate the first rela-
tive homology group. Choosing all cycles active and applying
Dirichlet boundary conditions to the boundary loops we obtain
eigenfunctions which typically look as shown in fig. 9(b). Note
that the boundary loops constitute contour lines of value zero in
this case. For Neumann boundary conditions the contour lines
run orthogonal to the boundary loops as shown in fig. 9(c).

4.2. Validation against Known Results

To demonstrate the correctness of our approach, we compare
the numerical output of our implementation to well-known re-
sults in special cases where the eigenvalue spectra are explicitly
computable or at least computable using another approach. We
discuss two cases: The flat torus and tori of revolution.

4.2.1. Flat Torus
The flat torus of dimensions a and b is obtained by identify-
ing the opposite sides of the rectangle [0, a] X [0, b]. Applying
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Figure 9: Manifold with genus g = 3 and b = 3 boundaries.

separation of variables the problem can be reduced to two in-
dependent instances of the one-dimensional circle case. The
eigenvalues of A for y = (0, 0) are given by the expression
2 2

for m,n € N. The multiplicities are one for m = n = 0, two if
either m = 0 or n = 0 but not both and four or higher in case
m>0,n>0.

For y # (0,0) the eigenvalue O disappears and the integers
get shifted by % in case of a sign flip. In the case y = (1, 1) we
obtain

We created a flat rectangle mesh with vertices on the bor-
ders identified according to the topology of the torus. The
two-dimensional FEM computations were carried out using the
sign-flipped basis functions. The resulting eigenvalues were
found to coincide within numerical tolerances with the eigen-
values obtained using the above equations.

4.2.2. Surfaces of Revolution
A surface of revolution generated by a progenitor curve
(x,2) : I — R? is defined by the parametrization

cos ¢ 0
X(t, ) = x()| sing |+ z(1) |0
0 1

We assume the progenitor curve to be parametrized by arc-
length and defined on the interval 7 = [0, L]. In this case, the
metric tensor associated with the parametrization is

1 0
(gij(t’ ‘P)) = (0 xZ(t))

The metric is therefore captured by the volume element w(¢) :=
ydetg = x(¢) which is a function of ¢ alone. From the local

description of the Laplace-Beltrami operator we obtain

1 ow
Af = =0if = —0,f = ——=a.f

By separation of variables, the substitution f(, ¢) = sin(By)u(t)
leads to the following differential equation for u:

B2
—0; (Wou) + " u=Awu

In order to compute the eigenvalues of a genus one surface
of revolution, we need to solve a sequence of Sturm-Liouville
problems, one for each possible value of 8. The possible values
of B and the boundary conditions are given by

B=k+ XD 40) = 1OuL), du(0) = (-1 Pau(L)

- 2 ’ - ’ t - t

for non-negative integers k. We created a torus of revolution and
carried out the computations for all four possible bundles using
this approach. The Sturm-Liouville problems were solved us-
ing a one dimensional finite element method in which the inter-
val [0, L] is subdivided by a sequence of nodes #p = 0 < #; <

- < t, = L. We identify the nodes fy and ;. For the an-
tiperiodic boundary condition y(2) = 1 the sign flip was easily
introduced into the basis function associated to this node.

Similar to the flat case, we created a mesh for the torus of
revolution and computed its eigenvalues using our modified
two-dimensional finite elements, comparing the results with the
eigenvalues obtained from the sequence of one-dimensional fi-
nite element computations. Again the results agree within nu-
merical tolerances.

5. Conclusion and Outlook

The proposed method generalizes the numerical computation
of the spectral decomposition of the Laplace-Beltrami operator
from the trivial line bundle case to other nontrivial line bundles.
This is achieved by adapting the finite element basis functions
to the topological structure of the bundles using appropriate



sign flips. Our method is applicable to models with nontriv-
ial topology as measured by a non-vanishing first cohomology
group and is robust and efficient. We gave experimental evi-
dence and theoretical substantiation of several interesting dif-
ferences that arise due to the choice of different bundles and
indicated how these can be exploited for finding collections of
cycles aligned with object symmetries or used to extend classi-
cal shape descriptors such as the Shape-DNA or the heat kernel
signature.

Based on the previous success of algorithms using
differential-geometric notions, including the Laplace-Beltrami
operator, we suggest that our method can be considered as a first
attempt to make the additional machinery of bundles accessible
to numerical computations in the context of shape processing.

Following the path of ideas outlined in this paper, research
could proceed in several directions: First, application studies on
the behavior of the modified Laplacians should be conducted in
order to exploit the additional flexibility offered by them and to
explore other ways in which they can serve as useful building
blocks in shape processing algorithms.

Second, it is possible to study the extension of the pro-
posed method to three-dimensional manifolds, i.e. solids that
are bounded by two-dimensional surfaces.

Third, it is possible to consider other differential operators
aside from the Laplacians discussed here. Finally, it is interest-
ing to generalize the computational discussion from real rank
one bundles to other vector bundles and differential operators
that act on their sections. Consider for example the set of iso-
morphism classes of complex line bundles over a manifold M.
It is known that these bundles are characterized by elements
of the second cohomology group H*(M, Z) with integer coeffi-
cients. Therefore we obtain a different vector bundle for each
n € 7Z, identifying the integer zero with the trivial bundle M x C
and the Euler characteristic of M with the tangent bundle T M,
fitting vector fields nicely into this unifying view.

We reckon that the exploration of these issues from a com-
putational point of view will have several fruitful applications.

Appendix A. Algebraic Topology

Let M be a path-connected topological space. A continuous
map y : [0,1] - M with y(0) = y(1) = p is called a loop
with base point p. Two loops are called homotopic if one can
be gradually deformed into the other. The set of equivalence
classes of loops with a fixed base point is called the first funda-
mental group of M, denoted by 71(M, p).

A covering of M is a space M with a surjective local home-
omorphism p : M — M. If Mis simply connected, then it is
called a universal covering of M. A deck transformation is a
homeomorphism £ : M — M such thatp o h = p. Using these
notions, another geometric interpretation of the first fundamen-
tal group is given by the fact that it is isomorphic to the deck
transformation group of the universal cover of M.

To visualize this construction, consider the torus M = S xS
as shown in fig. A.10. Its fundamental group is generated by
two loops, denoted by a and b. Cutting the torus along these
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Figure A.10: Fundamental group of the torus acting on its universal covering
space by deck transformations.

loops creates a rectangle, the so-called fundamental domain.
The universal covering is the Euclidean plane M = R?, which
is tiled with copies of the fundamental domain. The fundamen-
tal group acts on the points ¢ € M by translation, sending g
to the corresponding point in another copy of the fundamental
domain.

Now, assume M is a manifold represented by a singular sim-
plicial complex and let R be an arbitrary ring. A k-chain is a
formal linear combination of oriented k-simplices with coefli-
cients in the ring R. The set of k-chains form a group Cj under
addition. The boundary operator d; : Cy — Cy-; is a linear op-
erator that maps any oriented simplex to the chain consisting of
its appropriately signed oriented boundary simplices. A chain
a € Cy is called closed, or cycle, if da = 0 and it is called exact
if it can be written as @ = dy for some y € Ciy;. Any exact
chain is closed as a consequence of the fact that the boundary
of a boundary is empty, i.e. 8> = 0. Therefore, the sequence of
chain groups C; with the boundary operators in between form
a chain complex.

Now let Z; be the group of closed k-chains and let B; be
the group of exact k-cycles. Two cycles a, € Z; are called
homologous, if @ — 8 € B. The k-th homology groups are the
quotient groups Hy(M, R) := Z;/ B induced by this equivalence
relation.

The set of homomorphisms from H; to R form the k-th coho-
mology group H*(M, R). If R is a field, these homology and co-
homology groups are finite-dimensional vector spaces and for
our purposes it suffices to consider R = Z,.

Appendix B. Implementation Details

Appendix B.1. Construction of the FEM Basis Functions

The construction of the basis functions is carried out using
FEM techniques by piecing together polynomial functions on
individual triangles of the finite element mesh. The mesh can
be the original triangulation defining the object or a refined ver-
sion of it for higher accuracy computations. We summarize the
typical procedure for the so-called nodal elements and refer to
[50] for details.

Given a reference triangle R C R?, spanned by the ver-
tices (u,v) € {(0,0),(1,0), (0, 1)}, any real-valued polynomial
function ¢(u,v) has the form of a finite linear combination



of monomials v/ up to some degree. For the construction
of a finite element space, one typically defines a set of poly-
nomials ¢1,. .., by prescribing the interpolation conditions
Yi(p;) = 0;; onaset of local nodes py, ..., px € R. These nodes
can be chosen in an equidistant manner or they can be chosen
as Fekete points for better numerical conditioning.

Every triangle T in a triangulation of M can be parametrized
over the reference triangle R by a map &7 : R — T. Projecting
the set of local nodes on R onto M using &7 for all 7, eliminating
duplicates and enumerating the resulting set of nodes, we obtain
a set of global nodes ¢, ...,qy € M.

Figure B.11 shows the situation for linear and quadratic finite
elements. Each figure shows the reference element R and the
location of the local nodes as well as two triangles 7,7, ¢ M
that are parametrized over R via the maps &7,.&r, and the loca-
tions of the global nodes. Linear polynomial basis functions on
R, defined by the above mentioned interpolation conditions, are
given by the expressions

r=1-u-v Yr=u W3 =

while quadratic polynomial basis functions on R are given by

v,

U1 =1—=3u+2u = 3v + 4uv + 2v?
W = 4u — 4u* — duy

Y3
Wa = 4uv
1ﬁ5=—v+2v2

Yo = 4v — duy — 4?

= —u+2u®

Higher order finite element spaces are constructed in the same
way for higher accuracy computations, if desired.

In order to construct the global basis functions on M from
these polynomials, we denote by a(7T, k) the index i such that
qr = &r(p;) and assign to each global node g; a global basis
function ¢ defined piecewise by

@ilr = Worn © &7 (B.1)

for all triangles T that contain the node ¢; and by ¢lr := 0
for all other triangles. The sign choice depends on whether the
basis function is flipped on this triangle or not, as described in
section 3.2.

Everything discussed so far in the construction of the basis
functions boils down to computing the entries of the matrices

Figure B.11: Node numbering for a linear and for a quadratic element.
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A and B of the generalized eigenvalue problem in eq. (1) by
evaluating the integrals on the reference domain R. Using the
connectivity information given by «, the basis polynomials ¢;
on R and the metric coeflicients g;; := (0;ér, 0 ,;ér) we compute
the inverse metric coefficients (g) = (g;;)”", the volume ele-
ment w := ,/det(g;;) and obtain by summing over the relevant
triangles:

Ay = Z Zgij Oty - 20 oty - W dR
T YR

By = Z f k) - Fars) - W dR
T R

The integrals can be computed by numerical integration such as
Gauss-Legendre quadrature by computing a linear combination
of the integrand evaluated at a set of sample points in R with ap-
propriate weights [57]. If the embedding of the triangulation is
planar, the maps &7 are affine and their derivatives are constant.
In this case the integrals can be evaluated exactly.

Appendix B.2. Determining the Sign Flips

In order to determine the sign flips, it is algorithmically con-
venient to proceed as follows: we store with each triangle 7" an
array T.dof of length K that maps the local node numbers to
the global node numbers. More precisely we set T.dof [i]=k
if a(T,k) = i. With each triangle 7 we also store a bit-valued
array T.f1lip of length K that indicates which sign flips occur.
For i = a(T,k) the entry T.f1lip[i] determines the sign of
@i|T ineq. (B.1).

Initially, we set all flip bits to zero. Then, for each active loop
v we walk along its edges, looking at every triangle T adjacent
to the right of y, and flip T. £1ip [i] for all local node numbers
i that correspond to the global node number of a node lying
on y. Note that the described implementation handles cases
with more than one loop passing through a vertex as shown in
fig. 2(c). It also handles cases in which more than one active
loop passes through the same edge and the effects of the sign
flips cancel.
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